Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.265
Filtrar
1.
Sci Rep ; 12(1): 660, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-35027643

RESUMO

Zika virus (ZIKV) is a mosquito-borne virus that has a high risk of inducing Guillain-Barré syndrome and microcephaly in newborns. Because vaccination is considered the most effective strategy against ZIKV infection, we designed a recombinant vaccine utilizing the baculovirus expression system with two strains of ZIKV envelope protein (MR766, Env_M; ZBRX6, Env_Z). Animals inoculated with Env_M and Env_Z produced ZIKV-specific antibodies and secreted effector cytokines such as interferon-γ, tumor necrosis factor-α, and interleukin-12. Moreover, the progeny of immunized females had detectable maternal antibodies that protected them against two ZIKV strains (MR766 and PRVABC59) and a Dengue virus strain. We propose that the baculovirus expression system ZIKV envelope protein recombinant provides a safe and effective vaccine strategy.


Assuntos
Baculoviridae/imunologia , Imunidade Celular , Imunidade Humoral , Imunocompetência/imunologia , Vacinas Sintéticas , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/fisiologia , Vacinas Virais/imunologia , Infecção por Zika virus/imunologia , Infecção por Zika virus/virologia , Zika virus/imunologia , Animais , Masculino , Camundongos Endogâmicos C57BL
2.
J Mol Biol ; 434(6): 167421, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-34954236

RESUMO

Human SERINC5 (SER5) protein is a recently described restriction factor against human immunodeficiency virus-1 (HIV-1), which is antagonized by HIV-1 Nef protein. Other retroviral accessory proteins such as the glycosylated Gag (glycoGag) from the murine leukemia virus (MLV) can also antagonize SER5. In addition, some viruses escape SER5 restriction by expressing a SER5-insensitive envelope (Env) glycoprotein. Here, we studied the activity of human and feline SER5 on HIV-1 and on the two pathogenic retroviruses in cats, feline immunodeficiency virus (FIV) and feline leukemia virus (FeLV). HIV-1 in absence of Nef is restricted by SER5 from domestic cats and protected by its Nef protein. The sensitivity of feline retroviruses FIV and FeLV to human and feline SER5 is considerably different: FIV is sensitive to feline and human SER5 and lacks an obvious mechanism to counteract SER5 activity, while FeLV is relatively resistant to SER5 inhibition. We speculated that similar to MLV, FeLV-A or FeLV-B express glycoGag proteins and investigated their function against human and feline SER5 in wild type and envelope deficient virus variants. We found that the endogenous FeLV recombinant virus, FeLV-B but not wild type exogenous FeLV-A envelope mediates a strong resistance against human and feline SER5. GlycoGag has an additional but moderate role to enhance viral infectivity in the presence of SER5 that seems to be dependent on the FeLV envelope. These findings may explain, why in vivo FeLV-B has a selective advantage and causes higher FeLV levels in infected cats compared to infections of FeLV-A only.


Assuntos
HIV-1 , Vírus da Imunodeficiência Felina , Vírus da Leucemia Felina , Proteínas de Membrana , Proteínas do Envelope Viral , Produtos do Gene nef do Vírus da Imunodeficiência Humana , Animais , Gatos , Glicosilação , HIV-1/fisiologia , Humanos , Vírus da Imunodeficiência Felina/fisiologia , Vírus da Leucemia Felina/fisiologia , Proteínas de Membrana/fisiologia , Proteínas do Envelope Viral/fisiologia , Produtos do Gene nef do Vírus da Imunodeficiência Humana/fisiologia
3.
Drug Discov Today ; 27(1): 185-195, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34678489

RESUMO

Human herpes simplex viruses (HSVs) belong to the Herpesviridae family. At present, no vaccine or curative treatment is available for the prevention of HSV infections. Here, we review the cell surface receptors that are recognized by HSV's glycoprotein B, glycoprotein C, glycoprotein D, and the glycoprotein H - glycoprotein L complex to facilitate entry into host cells. These receptors include heparan sulfate (HS), herpesvirus entry mediator (HVEM), and nectin-1/-2, 3-O-sulfated heparan sulfate (3-OS HS).


Assuntos
Antivirais/farmacologia , Herpes Simples , Herpesvirus Humano 1 , Ligantes , Proteínas do Envelope Viral , Internalização do Vírus/efeitos dos fármacos , Desenvolvimento de Medicamentos , Descoberta de Drogas/métodos , Herpes Simples/tratamento farmacológico , Herpes Simples/prevenção & controle , Herpes Simples/virologia , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 1/fisiologia , Humanos , Glicoproteínas de Membrana/classificação , Proteínas do Envelope Viral/classificação , Proteínas do Envelope Viral/fisiologia
4.
J Gen Virol ; 102(9)2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34486974

RESUMO

Most flaviviruses are transmitted horizontally between vertebrate hosts by haematophagous arthropods. Others exhibit host ranges restricted to vertebrates or arthropods. Vertebrate-specific flaviviruses are commonly referred to as no-known-vector (NKV) flaviviruses and can be separated into bat- and rodent-associated NKV flaviviruses. Rio Bravo virus (RBV) is one of eight recognized bat-associated NKV (B-NKV) flaviviruses. Studies designed to identify the genetic determinants that condition the host range restriction of B-NKV flaviviruses have never been performed. To investigate whether the host range restriction occurs at the level of attachment or entry, chimeric flaviviruses were created by inserting the pre-membrane and envelope protein genes of RBV into the genetic backbones of yellow fever virus (YFV) and Zika virus (ZIKV), two mosquito-borne flaviviruses associated with human disease. The chimeric viruses infected both vertebrate and mosquito cells. In vertebrate cells, all viruses produced similar mean peak titres, but the chimeric viruses grew more slowly than their parental viruses during early infection. In mosquito cells, the chimeric virus of YFV and RBV grew more slowly than YFV at early post-inoculation time points, but reached a similar mean peak titre. In contrast, the chimeric virus of ZIKV and RBV produced a mean peak titre that was approximately 10-fold lower than ZIKV. The chimeric virus of YFV and RBV produced an intermediate plaque phenotype, while the chimeric virus of ZIKV and RBV produced smaller plaques than both parental viruses. To conclude, we provide evidence that the structural glycoproteins of RBV permit entry into both mosquito and vertebrate cells, indicating that the host range restriction of B-NKV flaviviruses is mediated by a post-attachment/entry event.


Assuntos
Flavivirus/fisiologia , Especificidade de Hospedeiro , Internalização do Vírus , Animais , Linhagem Celular , Quirópteros/virologia , Flavivirus/genética , Técnicas de Transferência de Genes , Genes Virais , Genes env , Genoma Viral , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/fisiologia , Carga Viral , Ensaio de Placa Viral , Ligação Viral , Replicação Viral , Vírus da Febre Amarela/genética , Vírus da Febre Amarela/fisiologia , Zika virus/genética , Zika virus/fisiologia
5.
PLoS Pathog ; 17(7): e1009720, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34280245

RESUMO

Hepatitis C virus (HCV) chronically infects 70 million people worldwide with an estimated annual disease-related mortality of 400,000. A vaccine could prevent spread of this pervasive human pathogen, but has proven difficult to develop, partly due to neutralizing antibody evasion mechanisms that are inherent features of the virus envelope glycoproteins, E1 and E2. A central actor is the E2 motif, hypervariable region 1 (HVR1), which protects several non-overlapping neutralization epitopes through an incompletely understood mechanism. Here, we show that introducing different HVR1-isolate sequences into cell-culture infectious JFH1-based H77 (genotype 1a) and J4 (genotype 1b) Core-NS2 recombinants can lead to severe viral attenuation. Culture adaptation of attenuated HVR1-swapped recombinants permitted us to identify E1/E2 substitutions at conserved positions both within and outside HVR1 that increased the infectivity of attenuated HVR1-swapped recombinants but were not adaptive for original recombinants. H77 recombinants with HVR1 from multiple other isolates consistently acquired substitutions at position 348 in E1 and position 385 in HVR1 of E2. Interestingly, HVR1-swapped J4 recombinants primarily acquired other substitutions: F291I (E1), F438V (E2), F447L/V/I (E2) and V710L (E2), indicating a different adaptation pathway. For H77 recombinants, the adaptive E1/E2 substitutions increased sensitivity to the neutralizing monoclonal antibodies AR3A and AR4A, whereas for J4 recombinants, they increased sensitivity to AR3A, while having no effect on sensitivity to AR4A. To evaluate effects of the substitutions on AR3A and AR4A binding, we performed ELISAs on extracted E1/E2 protein and performed immunoprecipitation of relevant viruses. However, extracted E1/E2 protein and immunoprecipitation of HCV particles only reproduced the neutralization phenotypes of the J4 recombinants. Finally, we found that the HVR1-swap E1/E2 substitutions decrease virus entry dependency on co-receptor SR-BI. Our study identifies E1/E2 positions that could be critical for intra-complex HVR1 interactions while emphasizing the need for developing novel tools for molecular studies of E1/E2 interactions.


Assuntos
Adaptação Fisiológica/fisiologia , Hepacivirus/fisiologia , Evasão da Resposta Imune/fisiologia , Proteínas do Envelope Viral/fisiologia , Linhagem Celular , Quimera , Células HEK293 , Hepacivirus/patogenicidade , Humanos , Internalização do Vírus
6.
Sci Rep ; 11(1): 7753, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33833367

RESUMO

We have formerly shown that glycoprotein C (gC) of Gallid alphaherpesvirus 2, better known as Marek's disease (MD) alphaherpesvirus (MDV), is required for interindividual spread in chickens. Since gC is conserved within the Alphaherpesvirinae subfamily, we hypothesized gC was important for interindividual spread of other alphaherpesviruses. To test this hypothesis, we first generated a fluorescent protein tagged clone of Gallid alphaherpesvirus 3 MD vaccine strain 301B/1 to track virus replication in cell culture and chickens using fluorescent microscopy. Following validation of this system, we removed the open reading frame of 301B/1 gC from the genome and determined whether it was required for interindividual spread using experimental and natural infection studies. Interindividual spread of MD vaccine 301B/1 was abrogated by removal of 301B/1 gC. Rescuent virus in which 301B/1 gC was inserted back into the genome efficiently spread among chickens. To further study the conserved function of gC, we replaced 301B/1 gC with MDV gC and this virus also efficiently spread in chickens. These data suggest the essential function of alphaherpesvirus gC proteins is conserved and can be exploited during the generation of future vaccines against MD that affects the poultry industry worldwide.


Assuntos
Galinhas/virologia , Herpesvirus Galináceo 2/patogenicidade , Proteínas do Envelope Viral/fisiologia , Sequência de Aminoácidos , Animais , Herpesvirus Galináceo 2/metabolismo , Herpesvirus Galináceo 2/fisiologia , Doença de Marek/transmissão , Doença de Marek/virologia , Homologia de Sequência de Aminoácidos , Proteínas do Envelope Viral/química , Replicação Viral
7.
Virology ; 552: 83-93, 2021 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-33120224

RESUMO

Bombyx mori nucleopolyhedrovirus (BmNPV) is highly pathogenic to Bombyx mori, silkworm, which causes serious cytopathic effects (CPEs) during infection. However, the role of viral protein in the virus-induced CPEs remains unclear. Here, we discovered that BmNPV infection induced severe CPEs including titer-dependent cell floating and changes in cellular surface morphology. Further explorations revealed the involvement of F-like protein (Bm14), a viral envelope protein, in inducing cytotoxicity and detachment of adherent BmN cells, and its disruption significantly impaired the virus infection-mediated CPEs. Intriguingly, transcriptomic analysis identified the tight association of Bm14 deletion with the activation of cellular oxidative phosphorylation pathway, consistent with the elevated mitochondrial membrane potential (MMP) levels and ATP concentrations as well as reduced ROS levels. Collectively, our results characterized for the first time the novel role of Bm14 in accelerating viral-induced cytopathogenicity via suppressing the cellular oxidative phosphorylation levels and upregulating the ROS levels.


Assuntos
Bombyx/virologia , Efeito Citopatogênico Viral , Nucleopoliedrovírus/metabolismo , Fosforilação Oxidativa , Espécies Reativas de Oxigênio/metabolismo , Proteínas do Envelope Viral/fisiologia , Viroses/metabolismo , Animais , Linhagem Celular , Perfilação da Expressão Gênica , Interações entre Hospedeiro e Microrganismos , Mutação , RNA-Seq , Regulação para Cima
8.
mBio ; 11(5)2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32934085

RESUMO

Membrane-associated RING-CH-type 8 (MARCH8) strongly blocks human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) incorporation into virions by downregulating its cell surface expression, but the mechanism is still unclear. We now report that MARCH8 also blocks the Ebola virus (EBOV) glycoprotein (GP) incorporation via surface downregulation. To understand how these viral fusion proteins are downregulated, we investigated the effects of MARCH8 on EBOV GP maturation and externalization via the conventional secretion pathway. MARCH8 interacted with EBOV GP and furin when detected by immunoprecipitation and retained the GP/furin complex in the Golgi when their location was tracked by a bimolecular fluorescence complementation (BiFC) assay. MARCH8 did not reduce the GP expression or affect the GP modification by high-mannose N-glycans in the endoplasmic reticulum (ER), but it inhibited the formation of complex N-glycans on the GP in the Golgi. Additionally, the GP O-glycosylation and furin-mediated proteolytic cleavage were also inhibited. Moreover, we identified a novel furin cleavage site on EBOV GP and found that only those fully glycosylated GPs were processed by furin and incorporated into virions. Furthermore, the GP shedding and secretion were all blocked by MARCH8. MARCH8 also blocked the furin-mediated cleavage of HIV-1 Env (gp160) and the highly pathogenic avian influenza virus H5N1 hemagglutinin (HA). We conclude that MARCH8 has a very broad antiviral activity by prohibiting different viral fusion proteins from glycosylation and proteolytic cleavage in the Golgi, which inhibits their transport from the Golgi to the plasma membrane and incorporation into virions.IMPORTANCE Enveloped viruses express three classes of fusion proteins that are required for their entry into host cells via mediating virus and cell membrane fusion. Class I fusion proteins are produced from influenza viruses, retroviruses, Ebola viruses, and coronaviruses. They are first synthesized as a type I transmembrane polypeptide precursor that is subsequently glycosylated and oligomerized. Most of these precursors are cleaved en route to the plasma membrane by a cellular protease furin in the late secretory pathway, generating the trimeric N-terminal receptor-binding and C-terminal fusion subunits. Here, we show that a cellular protein, MARCH8, specifically inhibits the furin-mediated cleavage of EBOV GP, HIV-1 Env, and H5N1 HA. Further analyses uncovered that MARCH8 blocked the EBOV GP glycosylation in the Golgi and inhibited its transport from the Golgi to the plasma membrane. Thus, MARCH8 has a very broad antiviral activity by specifically inactivating different viral fusion proteins.


Assuntos
Ebolavirus/química , Glicoproteínas/antagonistas & inibidores , HIV-1/química , Hemaglutininas Virais/metabolismo , Virus da Influenza A Subtipo H5N1/química , Ubiquitina-Proteína Ligases/genética , Proteínas do Envelope Viral/antagonistas & inibidores , Proteínas do Envelope Viral/fisiologia , Animais , Linhagem Celular , Chlorocebus aethiops , Ebolavirus/fisiologia , Glicosilação , Células HEK293 , HIV-1/fisiologia , Células HeLa , Células Hep G2 , Humanos , Virus da Influenza A Subtipo H5N1/fisiologia , Ligação Proteica , Células THP-1 , Ubiquitina-Proteína Ligases/metabolismo , Células Vero , Proteínas Virais de Fusão/antagonistas & inibidores , Proteínas Virais de Fusão/metabolismo
9.
Biochem Biophys Res Commun ; 532(1): 25-31, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-32819713

RESUMO

Hepatitis E virus (HEV) is a non-enveloped, globular particle that is responsible for acute hepatitis. HEV is classified into the Hepeviridae family and can be divided into four species (A-D). All HEV variants that infect humans are reported to belong to species A (HEV-A), except species C (HEV-C), which was reported to infect humans in December 2018. We determined the crystal structure of the HEV-C E2s domain at 1.8 Å resolution. It contains a classical 12-stranded ß-sandwich motif and forms dimers by hydrogen bonding, though the amino acid residues that form hydrogen bonds are quite different from the residues of HEV-A. The HEV-C E2s domain shares the common groove region with other structurally related viruses, and some subtle differences in this region may be related to host adoption or antibody binding. Antibody binding experiments and structural analysis revealed that HEV-C E2s is able to bind to the previously reported broad-spectrum antibody 8G12 but not bind to the antibody 8C11. Meanwhile, the structure analysis shows that HEV-C E2s does not have the key sites for binding to host cells as displayed by HEV-A (Genotype 1) E2s. These structural and biological findings present important implications for understanding the molecular mechanisms of host recognition and entry of HEV-C, as well as provide clues to the development of therapeutic antibodies and vaccines against HEV-C infection.


Assuntos
Vírus da Hepatite E/química , Proteínas do Envelope Viral/química , Anticorpos Antivirais , Antígenos Virais/química , Antígenos Virais/genética , Cristalografia por Raios X , Epitopos/química , Epitopos/genética , Hepatite E/imunologia , Hepatite E/virologia , Vírus da Hepatite E/genética , Vírus da Hepatite E/fisiologia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Conformação Proteica , Estrutura Quaternária de Proteína , Subunidades Proteicas , Homologia de Sequência de Aminoácidos , Eletricidade Estática , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/fisiologia
10.
J Virol ; 94(16)2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32522859

RESUMO

The immune modulatory protein herpes virus entry mediator (HVEM) is one of several cellular receptors used by herpes simplex virus 1 (HSV-1) for cell entry. HVEM binds to HSV-1 glycoprotein D (gD) but is not necessary for HSV-1 replication in vitro or in vivo Previously, we showed that although HSV-1 replication was similar in wild-type (WT) control and HVEM-/- mice, HSV-1 does not establish latency or reactivate effectively in mice lacking HVEM, suggesting that HVEM is important for these functions. It is not known whether HVEM immunomodulatory functions contribute to latency and reactivation or whether its binding to gD is necessary. We used HVEM-/- mice to establish three transgenic mouse lines that express either human WT HVEM or human or mouse HVEM with a point mutation that ablates its ability to bind to gD. Here, we show that HVEM immune function, not its ability to bind gD, is required for WT levels of latency and reactivation. We further show that HVEM binding to gD does not affect expression of the HVEM ligands BTLA, CD160, or LIGHT. Interestingly, our results suggest that binding of HVEM to gD may contribute to efficient upregulation of CD8α but not PD1, TIM-3, CTLA4, or interleukin 2 (IL-2). Together, our results establish that HVEM immune function, not binding to gD, mediates establishment of latency and reactivation.IMPORTANCE HSV-1 is a common cause of ocular infections worldwide and a significant cause of preventable blindness. Corneal scarring and blindness are consequences of the immune response induced by repeated reactivation events. Therefore, HSV-1 therapeutic approaches should focus on preventing latency and reactivation. Our data suggest that the immune function of HVEM plays an important role in the HSV-1 latency and reactivation cycle that is independent of HVEM binding to gD.


Assuntos
Herpesvirus Humano 1/fisiologia , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo , Proteínas do Envelope Viral/metabolismo , Animais , Feminino , Glicoproteínas/metabolismo , Herpes Simples/virologia , Herpesvirus Humano 1/patogenicidade , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Membro 14 de Receptores do Fator de Necrose Tumoral/imunologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/fisiologia , Internalização do Vírus , Latência Viral/fisiologia
11.
J Virol ; 94(16)2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32493823

RESUMO

Human cytomegalovirus (HCMV) is a major cause of morbidity and mortality among immunocompromised and immunonaive individuals. HCMV-induced signaling initiated during viral entry stimulates a rapid noncanonical activation of Akt to drive the differentiation of short-lived monocytes into long-lived macrophages, which is essential for viral dissemination and persistence. We found that HCMV glycoproteins gB and gH directly bind and activate cellular epidermal growth factor receptor (EGFR) and integrin ß1, respectively, to reshape canonical Akt signaling within monocytes. The remodeling of the Akt signaling network was due to the recruitment of nontraditional Akt activators to either the gB- or gH-generated receptor signaling complexes. Phosphoinositide 3-kinase (PI3K) comprised of the p110ß catalytic subunit was recruited to the gB/EGFR complex despite p110δ being the primary PI3K isoform found within monocytes. Concomitantly, SH2 domain-containing inositol 5-phosphatase 1 (SHIP1) was recruited to the gH/integrin ß1 complex, which is critical to aberrant Akt activation, as SHIP1 diverts PI3K signaling toward a noncanonical pathway. Although integrin ß1 was required for SHIP1 recruitment, gB-activated EGFR mediated SHIP1 activation, underscoring the importance of the interplay between gB- and gH-mediated signaling to the unique activation of Akt during HCMV infection. Indeed, SHIP1 activation mediated the increased expression of Mcl-1 and HSP27, two Akt-dependent antiapoptotic proteins specifically upregulated during HCMV infection but not during growth factor treatment. Overall, our data indicate that HCMV glycoproteins gB and gH work in concert to initiate an HCMV-specific signalosome responsible for the atypical activation of Akt required for infected monocyte survival and ultimately viral persistence.IMPORTANCE Human cytomegalovirus (HCMV) infection is endemic throughout the world regardless of socioeconomic conditions and geographic locations with a seroprevalence reaching up to 100% in some developing countries. Although asymptomatic in healthy individuals, HCMV can cause severe multiorgan disease in immunocompromised or immunonaive patients. HCMV disease is a direct consequence of monocyte-mediated systematic spread of the virus following infection. Because monocytes are short-lived cells, HCMV must subvert the natural short life-span of these blood cells by inducing a distinct activation of Akt, a serine/theonine protein kinase. In this work, we demonstrate that HCMV glycoproteins gB and gH work in tandem to reroute classical host cellular receptor signaling to aberrantly activate Akt and drive survival of infected monocytes. Deciphering how HCMV modulates the cellular pathway to induce monocyte survival is important to develop a new class of anti-HCMV drugs that could target and prevent spread of the virus by eliminating infected monocytes.


Assuntos
Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas do Envelope Viral/metabolismo , Linhagem Celular , Células Cultivadas , Citomegalovirus/patogenicidade , Citomegalovirus/fisiologia , Infecções por Citomegalovirus/metabolismo , Receptores ErbB/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Macrófagos/metabolismo , Monócitos/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Ativação Transcricional , Proteínas do Envelope Viral/fisiologia , Proteínas Virais de Fusão/metabolismo , Internalização do Vírus
12.
mSphere ; 5(1)2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-32024702

RESUMO

Herpes simplex viruses (HSVs) cause significant morbidity and mortality in humans worldwide. Herpesviruses mediate entry by a multicomponent virus-encoded machinery. Herpesviruses enter cells by endosomal low-pH and pH-neutral mechanisms in a cell-specific manner. HSV mediates cell entry via the envelope glycoproteins gB and gD and the heterodimer gH/gL regardless of pH or endocytosis requirements. Specifics concerning HSV envelope proteins that function selectively in a given entry pathway have been elusive. Here, we demonstrate that gC regulates cell entry and infection by a low-pH pathway. Conformational changes in the core herpesviral fusogen gB are critical for membrane fusion. The presence of gC conferred a higher pH threshold for acid-induced antigenic changes in gB. Thus, gC may selectively facilitate low-pH entry by regulating conformational changes in the fusion protein gB. We propose that gC modulates the HSV fusion machinery during entry into pathophysiologically relevant cells, such as human epidermal keratinocytes.IMPORTANCE Herpesviruses are ubiquitous pathogens that cause lifelong latent infections and that are characterized by multiple entry pathways. We propose that herpes simplex virus (HSV) gC plays a selective role in modulating HSV entry, such as entry into epithelial cells, by a low-pH pathway. gC facilitates a conformational change of the main fusogen gB, a class III fusion protein. We propose a model whereby gC functions with gB, gD, and gH/gL to allow low-pH entry. In the absence of gC, HSV entry occurs at a lower pH, coincident with trafficking to a lower pH compartment where gB changes occur at more acidic pHs. This report identifies a new function for gC and provides novel insight into the complex mechanism of HSV entry and fusion.


Assuntos
Herpes Simples/virologia , Herpesvirus Humano 1/fisiologia , Concentração de Íons de Hidrogênio , Proteínas do Envelope Viral/química , Internalização do Vírus , Animais , Chlorocebus aethiops , Humanos , Domínios Proteicos , Células Vero , Proteínas do Envelope Viral/fisiologia
13.
Curr Opin Struct Biol ; 62: 112-120, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31935542

RESUMO

One of the essential steps in every viral 'life' cycle is entry into the host cell. Membrane-enveloped viruses carry dedicated proteins to catalyse the fusion of the viral and cellular membrane. Herpesviruses feature a set of essential, structurally diverse glycoproteins on the viral surface that form a multicomponent fusion machinery, necessary for the entry mechanism. For Herpes simplex virus 1, these essential glycoproteins are gD, gH, gL and gB. In this review we describe the functions of the individual components, the potential interactions between them as well as the influence of post-translational modifications on the fusion mechanism.


Assuntos
Glicoproteínas/fisiologia , Herpes Simples/virologia , Herpesvirus Humano 1/fisiologia , Proteínas do Envelope Viral/fisiologia , Humanos , Internalização do Vírus
15.
J Virol ; 93(13)2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30971473

RESUMO

Nipah and Hendra viruses (NiV and HeV) exhibit high lethality in humans and are biosafety level 4 (BSL-4) paramyxoviruses in the growing genus Henipavirus The attachment (G) and fusion (F) envelope glycoproteins are both required for viral entry into cells and for cell-cell fusion, which is pathognomonic of henipaviral infections. Here, we compared the fusogenic capacities between homologous and heterologous pairs of NiV and HeV glycoproteins. Importantly, to accurately measure their fusogenic capacities, as these depend on glycoprotein cell surface expression (CSE) levels, we inserted identical extracellular tags to both fusion (FLAG tags) or both attachment (hemagglutinin [HA] tags) glycoproteins. Importantly, these tags were placed in extracellular sites where they did not affect glycoprotein expression or function. NiV and HeV glycoproteins induced comparable levels of homologous HEK293T cell-cell fusion. Surprisingly, however, while the heterologous NiV F/HeV G (NF/HG) combination yielded a hypofusogenic phenotype, the heterologous HeV F/NiV G (HF/NG) combination yielded a hyperfusogenic phenotype. Pseudotyped viral entry levels primarily corroborated the fusogenic phenotypes of the glycoprotein pairs analyzed. Furthermore, we constructed G and F chimeras that allowed us to map the overall regions in G and F that contributed to these hyperfusogenic or hypofusogenic phenotypes. Importantly, the fusogenic phenotypes of the glycoprotein combinations negatively correlated with the avidities of F-G interactions, supporting the F/G dissociation model of henipavirus-induced membrane fusion, even in the context of heterologous glycoprotein pairs.IMPORTANCE The NiV and HeV henipaviruses are BSL-4 pathogens transmitted from bats. NiV and HeV often lead to human death and animal diseases. The formation of multinucleated cells (syncytia) is a hallmark of henipaviral infections and is caused by fusion of cells coordinated by interactions of the viral attachment (G) and fusion (F) glycoproteins. We found via various assays that viral entry and syncytium formation depend on the viral origin of the glycoproteins, with HeV F and NiV G promoting higher membrane fusion levels than their counterparts. This is important knowledge, since both viruses use the same bat vector species and potential coinfections of these or subsequent hosts may alter the outcome of disease.


Assuntos
Glicoproteínas/metabolismo , Vírus Hendra/fisiologia , Infecções por Henipavirus/virologia , Vírus Nipah/fisiologia , Fenótipo , Proteínas Virais de Fusão/fisiologia , Células Gigantes/metabolismo , Glicoproteínas/genética , Células HEK293 , Vírus Hendra/genética , Humanos , Fusão de Membrana , Vírus Nipah/genética , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/fisiologia , Proteínas Virais de Fusão/genética , Ligação Viral , Internalização do Vírus
16.
J Virol ; 93(11)2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30867314

RESUMO

Coronaviruses (CoVs) assemble by budding into the lumen of the early Golgi complex prior to exocytosis. The small CoV envelope (E) protein plays roles in assembly, virion release, and pathogenesis. CoV E has a single hydrophobic domain (HD), is targeted to Golgi membranes, and has cation channel activity in vitro The E protein from avian infectious bronchitis virus (IBV) has dramatic effects on the secretory system, which require residues in the HD. Mutation of the HD of IBV E in a recombinant virus background results in impaired growth kinetics, impaired release of infectious virions, accumulation of IBV spike (S) protein on the plasma membrane compared to wild-type (WT) IBV-infected cells, and aberrant cleavage of IBV S on virions. We previously reported the formation of two distinct oligomeric pools of IBV E in transfected and infected cells. Disruption of the secretory pathway by IBV E correlates with a form that is likely monomeric, suggesting that the effects on the secretory pathway are independent of E ion channel activity. Here, we present evidence suggesting that the monomeric form of IBV E correlates with an increased Golgi luminal pH. Infection with IBV or expression of IBV E induces neutralization of Golgi pH, promoting a model in which IBV E alters the secretory pathway through interaction with host cell factors, protecting IBV S from premature cleavage and leading to the efficient release of infectious virus from the cells. This is the first demonstration of a coronavirus-induced alteration in the microenvironment of the secretory pathway.IMPORTANCE Coronaviruses are important human pathogens with significant zoonotic potential. Progress has been made toward identifying potential vaccine candidates for highly pathogenic human CoVs, including the use of attenuated viruses that lack the CoV E protein or express E mutants. However, no approved vaccines or antiviral therapeutics exist. Understanding the role of the CoV E protein in virus assembly and release is thus an important prerequisite for potential vaccines as well as in identifying novel antiviral therapeutics.


Assuntos
Coronavirus/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Proteínas do Envelope Viral/metabolismo , Animais , Bronquite/imunologia , Bronquite/virologia , Membrana Celular/metabolismo , Chlorocebus aethiops , Coronavirus/patogenicidade , Proteínas do Envelope de Coronavírus , Infecções por Coronavirus/virologia , Complexo de Golgi/fisiologia , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Vírus da Bronquite Infecciosa/imunologia , Via Secretória , Células Vero , Proteínas do Envelope Viral/fisiologia , Vírion/metabolismo , Montagem de Vírus , Viroses/metabolismo
17.
J Virol ; 93(12)2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-30918075

RESUMO

The major immediate early 62 (IE62) protein of varicella-zoster virus (VZV) is delivered to newly infected cell nuclei, where it initiates VZV replication by transactivating viral immediate early (IE), early (E), and late (L) genes. Interferon gamma (IFN-γ) is a potent cytokine produced following primary VZV infection. Furthermore, VZV reactivation correlates with a decline in IFN-γ-producing immune cells. Our results showed that treatment with 20 ng/ml of IFN-γ completely reduced intracellular VZV yield in A549 lung epithelial cells, MRC-5 lung fibroblasts, and ARPE-19 retinal epithelial cells at 4 days post-VZV infection. However, IFN-γ reduced virus yield only 2-fold in MeWo melanoma cells compared to that of untreated cells. IFN-ß significantly inhibited VZV replication in both ARPE-19 and MeWo cells. In luciferase assays with VZV open reading frame 61 (ORF61) promoter reporter plasmid, IFN-γ abrogated the transactivation activity of IE62 by 95%, 97%, and 89% in A549, ARPE-19, and MRC-5 cells, respectively. However, IFN-γ abrogated IE62's transactivation activity by 16% in MeWo cells, indicating that IFN-γ inhibits VZV replication as well as IE62-mediated transactivation in a cell line-dependent manner. The expression of VZV IE62 and ORF63 suppressed by IFN-γ was restored by JAK1 inhibitor treatment, indicating that the inhibition of VZV replication is mediated by JAK/STAT1 signaling. In the presence of IFN-γ, knockdown of interferon response factor 1 (IRF1) increased VZV replication. Ectopic expression of IRF1 reduced VZV yields 4,000-fold in MRC-5 and ARPE-19 cells but 3-fold in MeWo cells. These results suggest that IFN-γ blocks VZV replication by inhibiting IE62 function in a cell line-dependent manner.IMPORTANCE Our results showed that IFN-γ significantly inhibited VZV replication in a cell line-dependent manner. IFN-γ inhibited VZV gene expression after the immediate early stage of infection and abrogated IE62-mediated transactivation. These results suggest that IFN-γ blocks VZV replication by inhibiting IE62 function in a cell line-dependent manner. Understanding the mechanisms by which IFN-γ plays a role in VZV gene programming may be important in determining the tissue restriction of VZV.


Assuntos
Herpesvirus Humano 3/metabolismo , Interferon gama/metabolismo , Replicação Viral/efeitos dos fármacos , Células A549 , Antivirais/metabolismo , Linhagem Celular , Humanos , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Proteínas Imediatamente Precoces/fisiologia , Interferon beta/genética , Interferon gama/farmacologia , Janus Quinase 1/metabolismo , Fases de Leitura Aberta , Ligação Proteica , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais , Transativadores/metabolismo , Transativadores/fisiologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Proteínas do Envelope Viral/fisiologia
18.
J Virol ; 93(11)2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30894468

RESUMO

The human cytomegalovirus (HCMV) glycoprotein complex gH/gL/gO is required for the infection of cells by cell-free virions. It was recently shown that entry into fibroblasts depends on the interaction of gO with the platelet-derived growth factor receptor alpha (PDGFRα). This interaction can be blocked with soluble PDGFRα-Fc, which binds to HCMV virions and inhibits entry. The aim of this study was to identify parts of gO that contribute to PDGFRα binding. In a systematic mutational approach, we targeted potential interaction sites by exchanging conserved clusters of charged amino acids of gO with alanines. To screen for impaired interaction with PDGFRα, virus mutants were tested for sensitivity to inhibition by soluble PDGFRα-Fc. Two mutants with mutations within the N terminus of gO (amino acids 56 to 61 and 117 to 121) were partially resistant to neutralization. To validate whether these mutations impair interaction with PDGFRα-Fc, we compared binding of PDGFRα-Fc to mutant and wild-type virions via quantitative immunofluorescence analysis. PDGFRα-Fc staining intensities were reduced by 30% to 60% with mutant virus particles compared to wild-type particles. In concordance with the reduced binding to the soluble receptor, virus penetration into fibroblasts, which relies on binding to the cellular PDGFRα, was also reduced. In contrast, PDGFRα-independent penetration into endothelial cells was unaltered, demonstrating that the phenotypes of the gO mutant viruses were specific for the interaction with PDGFRα. In conclusion, the mutational screening of gO revealed that the N terminus of gO contributes to efficient spread in fibroblasts by promoting the interaction of virions with its cellular receptor.IMPORTANCE The human cytomegalovirus is a highly prevalent pathogen that can cause severe disease in immunocompromised hosts. Currently used drugs successfully target the viral replication within the host cell, but their use is restricted due to side effects and the development of resistance. An alternative approach is the inhibition of virus entry, for which understanding the details of the initial virus-cell interaction is desirable. As binding of the viral gH/gL/gO complex to the cellular PDGFRα drives infection of fibroblasts, this is a potential target for inhibition of infection. Our mutational mapping approach suggests the N terminus as the receptor binding portion of the protein. The respective mutants were partially resistant to inhibition by PDGFRα-Fc but also attenuated for infection of fibroblasts, indicating that such mutations have little if any benefit for the virus. These findings highlight the potential of targeting the interaction of gH/gL/gO with PDGFRα for therapeutic inhibition of HCMV.


Assuntos
Glicoproteínas de Membrana/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Proteínas do Envelope Viral/metabolismo , Replicação Viral/genética , Alanina , Linhagem Celular , Células Cultivadas , Citomegalovirus/metabolismo , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/metabolismo , Infecções por Citomegalovirus/virologia , Endocitose , Células Endoteliais/virologia , Células Epiteliais/virologia , Fibroblastos/virologia , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/fisiologia , Mutação , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/fisiologia , Vírion/metabolismo , Internalização do Vírus
19.
Viruses ; 11(2)2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30700004

RESUMO

The HIV-1 entry-route is a matter of ongoing controversy, and there is evidence for fusion either at the cell surface or from within endosomes. A recent report demonstrated that isoform 4 of nuclear receptor coactivator 7 (NCOA7iso4) interacts with endolysosomal vacuolar-type H⁺-ATPase (V-ATPase), increasing lytic activity and thereby severely affecting the entry of vesicular stomatitis virus glycoprotein (VSV-G)-mediated, but not HIV-Env-mediated, entry and infection. As basal expression of NCOA7iso4 is low in the absence of type-1 interferons, its overexpression is a novel tool to study viral entry.


Assuntos
Endocitose , HIV-1/fisiologia , Coativadores de Receptor Nuclear/genética , Internalização do Vírus , Membrana Celular/virologia , Humanos , Isoformas de Proteínas , Proteínas do Envelope Viral/fisiologia
20.
Virology ; 529: 177-185, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30716579

RESUMO

Variants of Ross River virus (RRV) that bind to heparan sulfate (HS) were previously selected by serial passaging in cell culture. To explore the effects of mutations that convey HS utilization, we pseudotyped Moloney murine leukemia virus (MoMLV), with the RRV envelope. We substituted amino-acid residues 216 and 218 on RRV-E2-envelope glycoprotein with basic amino-acid residues, because these mutations confer affinity for HS upon RRV. However, T216R-RRV- and N218R-RRV-pseudotyped viruses possessed lower transduction titers, and we demonstrated that HS-affinity impeded release of pseudotyped virus from producer cells. Addition of heparinase to HS-expressing target cells reduces the transduction efficiency of the T216R-RRV- and N218R-RRV-pseudotyped viruses, whereas no such effect is seen in cells lacking HS. Under appropriate conditions, these T216R-RRV- and N218R-RRV-pseudotyped viruses have enhanced capacities for transducing HS-expressing cells. General principles concerning viral adaptation to the use of attachment factors and design of pseudotyped viral vectors are discussed.


Assuntos
Heparitina Sulfato/fisiologia , Vírus da Leucemia Murina de Moloney/fisiologia , Vírus do Rio Ross/fisiologia , Proteínas do Envelope Viral/fisiologia , Liberação de Vírus/fisiologia , Animais , Linhagem Celular , Cricetinae , Camundongos , Mutação , Ligação Proteica , Internalização do Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...